Hyperledger Fabric 1.4.0
Performance Information Report

N K Lincoln
IBM Blockchain Developer Tools
nick.lincoln@uk.ibm.com

Version 1.0

mailto:nick.lincoln@uk.ibm.com

Table of Contents

=] [Lol -Z PP 3
[\) =N 3
Benchmark INfOrM@LiONcceeueevveeneiirineuniiiienniiiiisnsiissssnisississssisisssssssssnsssssssssssssssssssns 4
SYSEEM UNAEr TSt ...cueiiiiieiiiiiiieiiinesettrnserrrnesserernssesasnsssesennsssssenasssssennsssssennssssssnsssssssnssnsnenn 4
B2 L= 10 = A0 Y14 - Vot 4
SMart Contract BENCAMArKScuieiiiiiiiiiciiciccrer e e et ressessessessessessessassessassensanaens 6
Empty Contract BeNCAMQArk RESUILS..........cc..eeeeuereeneeererereeserenseeenesesenseesnssessasessassssnssssnsseses 8
7= 11 = =S 8
EVAIUGTE RESUIES...uvveiiiiieiitiiee ettt e st e e e s bb e e e e s e tbbb e e e e eerabbaseeessesbraesessensbtaeeseesnnnraneas 8
|V [1 (SN 0] oI =Y A7 | 1o 1 L OO ORISRt 10
LY T 1 1 N 11
SUBIMIT RESUIES ceveiiiiiiiiiiiei ettt e et ettt ettt e s e e e e a bbb bbb baaeeeeeeeeesaseseeaeesesesesassssssssssssrarsrnnennes 11

8] Y011 A O] o 1Y =] V7 L (o] F T SRRUUPRRN 13
Evaluate Transaction BeNCAMArK RESUILSeeeereuereeireeireeireireireireeireirnisnsisensrnsennns 15
Get ASSEE BENCAMAIK ...c.ciuiiiiiiiiiiiieiitereerttrecteteetteteetteseessessessessesssssessessessessesssssesssssssassnnne 15
BENCNMAIK RESUILS ..ottt et e e e e tbb e e e e e e esaabae e e s eseabaeeeeesesbaeeeseessrees 16
BENCMArK ODSEIVATIONS ..vviiiiiiiiiiei ittt esbe e e e s e e e e e estbbeeeeeeesaabaeeesessabaeseessessbaseeseessrees 18
Batch Get AsSet BENChMATIK ... ccuiieiiiiiiiiiiiici ettt ereere e eeeseeeraeerasesasesnssanssanssansans 19
BENCHMAIK RESUIES .evvvvveviiiiieiiieeeeeee ettt e et e e e e e e e ettt et s e s e s s b b s bababasaerereeeaeaeeseeeseseesesnnsssnssnes 19
BeNCHMAIK OBSEIVATIONS ..veveiiiiiiiiiiiiiiieieeecce e e et e et et et e e e e s e s s s s babababaa s e e ereeeesaeaeeeseeseseesessssssnsrees 21
Paginated Range Query BeNChmark........ oo rene s e eee s s e e e s e s e e nnes 22
BENCNMAIK RESUIES ..ot e e e e tbaa e e e e e estabaseeeeseabaaeeeesessaaeeeeensnres 22
BENCMArk ODSEIVATIONS ..vviiiiiiiiiiei ittt eerbe e e e e s e e e e eesabbaeeeeeesaabeeeesesesbaseeessesssreeeeeessrees 24
Paginated Rich Query Benchmark........cc. it rrec s seeesea e seasenennns 25
BENCHMAIK RESUILS ..vvviviiiiiiiiiiiiiiii e e e e e e e e e et et e e s et e s e b b e b e b s b aaasaereeraeaeeeeeesesessessssssnssnes 25

YT ol a1 10 O L T =T AV Y (o] N 26
Submit Transaction BeNCAMAIK RESUILSceeueeeeereieeireiireriensienreensienseenseensesnsessssenees 28
Create ASSet BENCRMAIKcucieiiiiiiiiiicieictecr e crerrcreeeeseeseessessesesssesssssesesssesssssesssssessnsnens 28
BENCNMAIK RESUILS ..ot e e e e bb e e e e e saab e e e e e eseabaeeeeesesbaeeessessrees 29
BENCMArK ODSEIVATIONS w.vviiiiiiiiiiii ettt erbe e e e e s e e s e estbbaeeeeeesaabeeeesesasbaseeessessbreseseessrens 31
Batch Create ASSet BeNCRMArK v ieiiieiiiiiiiritttiietereteetenteeseecsesesssessssasssssasssssessassassansans 31
BENCHMAIK RESUILS ..vvvvvireiieieiieeeeee e e et et e e et et e e et s e s e s s b ba b s ba s s b ereereeraeaaeeeeesesessessssssnssnns 32
BENCHMAIK OBSEIVATIONS cveveeiiiiiiiiiiiiiieieeeccc e e e et e ettt et et e s e s s b s b s barareeeeeresaeaeeeeeeseeeesessssssnssees 34
APPCNAIX cveunriniiiienriiiiiiiieiiiiiniiiniitaiitsnsissssissssiossssessnsssssssosssssssssssssnsssssssssssssssnssssnsssssnns 35
Machine ConfigUration.......cicu ittt ere e rea e seaseseasssenssssnssssensesnassnennes 35
o T 1 35
RESOUICES ..cuvuieirereiereeeirereteereeesreresseseesesassssasessesassssnssssassssasassssassssssassssnssasassssassssasassssnssnsassnsns 35

Version 1.0 2

Preface

This report intended to provide key processing and performance characteristics to architects,
systems programmers, analysts and programmers. For best use of the performance reports, the
user should be familiar with the concepts and operation of Hyperledger Fabric.

Performance observations have been obtained from testing a Hyperledger Fabric JavaScript
smart contract, driven by Fabric-SDK-Node clients via Hyperledger Caliper, a performance
benchmark harness for Hyperledger blockchain solutions. During the benchmarking
Hyperledger Caliper was configured to drive all smart contract transactions through a
Hyperledger Fabric client gateway.

Notes

The performance information is obtained by measuring the transaction throughput for different
types of smart contract transactions. The term “transaction” is used in a generic sense, and
refers to any interaction with a smart contract, regardless of the complexity of the subsequent
interaction(s) with the blockchain platform.

Measuring transaction throughput demonstrates potential transaction rates, and the impact of
the relative cost of different Hyperledger Fabric Stub API calls.

The data contained in the reports was measured in a controlled environment, results obtained
in other environments might vary. For more details on the environments used, see the resources
at the end of this report.

The performance data cannot be compared across versions of Hyperledger Fabric, as testing
hardware and environments may have changed significantly. The testing contents and
processing methodologies may have also changed between performance reports, and so cannot
be compared.

Version 1.0 3

Benchmark Information

System Under Test

The test topology is given in Figure 1 below. All tests were performed on a single Softlayer

machine with the specification given in the Appendix section.

Test '," Organization 0 ;" Organization 1 .
Files iCouchDB || | i CouchDB !

 (optional) : (optional)

Smart contract Smart contract

- . .
container 0 container 1
Benchmark Engine : :
1| Peer0 Peer 1 i | Orderer
""""" - T transactions T
Analyze Q«-,
| Client app_0 Client app_n
- —

Figure 1: Test Topology

Two Hyperledger Fabric networks were investigated, each comprising of two organizations,
with each organization having a single peer, and using a Solo ordering service. The difference
between the two networks was the World State database used: one implemented LevelDB; the
other CouchDB. The testing of distributed networks is the subject of future works.

The Smart Contract

All tests are facilitated by the “fixed-asset” smart contract that is deployed to the Hyperledger
Fabric network. The smart contract facilitates the driving of core APl methods that are
commonly used by a smart contract developer.

Smart Contract Method Description

emptyContract Immediately returns an empty (null) response and represents the
minimum possible overhead incurred through evaluation or
submission of a smart contract method via a gateway.

createAsset Performs a single “putState()” operation, inserting an asset of

defined byte size into the World State database.

Performs multiple “putState()” operations over an array of
assets, inserting each into the World State database.

Performs a single “getState()” operation, extracting and
returning a single asset from the World State database using a
passed UUID.

createAssetsFromBatch

getAsset

Version 1.0 4

getAssetsFromBatch Performs multiples “getState()” operations over an array of asset
UUIDs, extracting and returning all asset from the World State
database.

paginatedRangeQuery Performs a “getStateByRangeWithPagination()® operation,
based on passed start/end keys, a desired page size and passed
bookmark. The records obtained from the query are processed
and returned in a JSON response that also includes a new
bookmark.

paginatedRichQuery Performs a "getQueryResultWithPagination()" operation, based
on a passed Mango query string, a desired page size and
bookmark. The records obtained from the query are processed
and returned in a JSON response that also includes a new
bookmark.

Only valid for deployments including a CouchDB World State
database.

Smart contract methods may be evaluated or submitted via a Fabric Network gateway. An
overview of possible transaction pathways from a client application interacting with
Hyperedger Fabric is presented in Figure 2.

Evaluation of a smart contract method will not include interaction with the ordering service,
and consequently will not result in appending to the leger; submission of a smart contract will
result on the method being run on Hyperledger Fabric Peers as required by the endorsement
policy and appended to the ledger by the ordering service.

Blockchain

— H HJ
- -
[

Smart
Contract

Ledger

- L -
Application :

Figure 2: Possible Transaction Pathways

Version 1.0 5

Smart Contract Benchmarks

The complete output of the benchmark runs, and the resources used to perform them, are in the
resources section of the Appendix. All benchmarks are driven at maximum possible TPS for a
duration of 5 minutes by 4 clients. This is followed by a driving the benchmarks at a set TPS
for a duration of 5 minutes by 4 clients to enable resource utilization comparisons. The

benchmarks comprise of:

Benchmark Config File(s)

Empty empty-contract-1of.yaml
Contract empty-contract-2of.yaml
Create Asset create-asset.yaml

Create Asset create-asset-batch.yaml
Batch

Get Asset get-asset.yaml

Get Asset Batch get-asset-batch.yaml
Paginated mixed-range-query-
Range Query pagination.yaml

Version 1.0

Description

Evaluates and submits “emptyContract’
gateway transactions for the fixed-asset
smart contract. This transaction performs no
action.

Repeated for different Endorsement Policies.
Submits “createAsset” gateway transactions
for the fixed-asset smart contract. Each
transaction inserts a single asset into the
world state database.

Successive rounds increase the asset byte
size inserted into the world state database.
Submits “createAssetsFromBatch™ gateway
transactions for the fixed-asset smart
contract. Each transaction inserts a sequence
of fixed size assets into the world state
database.

Successive rounds increase the batch size of
assets inserted into the world state database.
Evaluates "getAsset’ gateway transactions
for the fixed-asset smart contract. Each
transaction retrieves a single asset from the
world state database.

Successive rounds increase the asset byte
size retrieved from the world state database.
Evaluates “getAssetsFromBatch™ gateway
transactions for the fixed-asset smart
contract. Each transaction retrieves a series
of assets from the world state database.

Successive rounds increase the batch size of
assets retrieved from the world state
database.

Evaluates “paginatedRangeQuery” gateway
transactions for the fixed-asset smart
contract. Each transaction retrieves a set of
assets from the world state database.

Paginated Rich mixed-rich-query-

Query

pagination.yaml

Version 1.0

Successive rounds increase the page size of
assets retrieved from the world state
database.

Evaluates “paginatedRichQuery” gateway
transactions for the fixed-asset smart
contract. Each transaction retrieves a set of
assets from the world state database.

Successive rounds increase the page size of
assets retrieved from the world state
database.

Empty Contract Benchmark Results

The Empty Contract Benchmark consists of evaluating or submitting “emptyContract™ gateway
transactions for the fixed-asset smart contract deployed within LevelDB and CouchDB
networks. This is repeated for networks that use the following endorsement policies:

e l-of-any

e 2-of-any

Achievable throughput and associated latencies are investigated through maintaining a
constant transaction backlog of 15 transactions for each of the 4 clients.

Resource utilization is investigated for fixed TPS rates of 750 and 350TPS for evaluate and
submit transaction respectively.

Evaluate
When evaluating "emptyContract” gateway transactions, there is no interaction with the ledger.
This results in the transaction pathway as depicted in Figure 3

Blockchain

Ledger : D D

' o
J World State

Client _, m

-9 »

Application

Figure 3: Evaluate Empty Contract Transaction Pathway

Evaluate Results

LevelDB- evaluate and submit transactions with varying endorsement policy

Type Policy Max Latency (s) | Avg Latency (s) | Throughput (TPS)
evaluate 1-of-any 0.18 0.04 792.3
evaluate 2-of-any 0.18 0.04 796.4

Version 1.0 8

CouchDB- evaluate and submit transactions with varying endorsement policy

Type Policy Max Latency (s) | Avg Latency (s) | Throughput (TPS)
evaluate 1-of-any 0.16 0.04 789.9
evaluate 2-of-any 0.17 0.04 797.5

LevelDB Resource Utilization— Evaluate By Policy @750TPS

ordarer

orglpeer

orderer

orgapeer

orglee
Boo

LevelDB Evaluate Memory (MB)

orglcc
- = 10f Any

- &= 2of Any

orglpeer

orglce
1000

LevelDB Evaluate Network I/0 (MB)

orgicc
i1 of Any
- &= 2of Any

orglpeer

orderer

orgZpear

LevelDB Evaluate CPU (%)
orglcc
0.80
{1 R-)
040
630 orglec
ol 1 0f Ay
= o= = 2 of Any

0.og

orglpeer

CouchDB Resource Utilization— Evaluate By Policy @750TPS

orgCouchDB
.
i
I?"\
'y
i

orglCaouchDB ol

arderer

orgCouchDB

orglCouchDB

orderer

orglce
700
600
500
400
300
-,

]
1u3 b | A

Ld

“.’-N orglpesr
L

CouchDB Evaluate Memory (MB)

orglee

= &= 10f Ay

- &= 2of Any

orglpeer

orglcc
iooo

800
600
400
200

u L‘
orglpeer

CouchDB Evaluate Network 1/0 (MB)

orglee

w1 of Any
- &= 20of Any

orglpeer

org2CouchDB

orglCouchDB

arderer

CouchDB Evaluate CPU (%)

orglcc
0.80

0.e0
orgloc
0.40
0.20
w1 of Any
- ® =2 of Any

0.00

arglpesr

orgapeer

Version 1.0

Resource Utilization— Evaluate 1ofAny Policy @750TPS

lofAny Evaluate Memory (MB)

1lofAny Evaluate CPU (%)

orglce orglcc
700 0.80
800 = 1?
org2CouchDB 4tt org? org2CouchDB 0.e0 orgd
300 0.40 H
20 0.20 "
1oa™a =8 = Level DB & e ovel DB
[. 0.00 gy,
) . ouchDB e CouchDB
orglCouchDB ‘; P orglpeer orglCouchDE @ orglpear
L) I’
')
- s
=2 /
e
ordarer orgipeer rdare; orgpeer
1lofAny Evaluate Network /O (MB)
orgloe
1000
a00
org2CouchDB €0a orgicc
400
ZCL: e LEvel DB
. CouchDB
orglCos B orglpear
ordarer orgdpesr
Resource Utilization— Evaluate 20fAny Policy @750TPS
2ofAny Evaluate Memory (MB) 2ofAny Evaluate CPU (%)
orglec orglec
a00 0.80
600 N 0.60 1' .
org2CouchDB orgcc org2CouchDB orgloc
Ll 0.40 H
200 0.20 "
M =8 - Level DB i & i Level DB
L:‘ - CouchDB M 1-"“1""“--:.:_--...__ CouchDB
orglCouchDB A P orglpesr orglCo e orglpes:
L) //
! ¢
s P
——
.
ordarar orgipeer ordara orglpeer
2ofAny Evaluate Network /O (MB)
orglee
1000
ang
org2CouchDB €0a orgice
400
ZCL: e LEvel DB
. CouchDB
orglCo B orglpeer
ordarar orgzpesr

Evaluate Observations

With a fixed world state database, the endorsement policy has no impact on the consumed

resources when evaluating gateway transactions.

In comparing a LevelDB world state database with a CouchDB equivalent, there is no
appreciable difference in the achievable transaction throughput or transaction latency, nor the
CPU or network I/O consumed by either implementation when varying the endorsement policy.
There is a slight cost in additional memory requirements for the use of a CouchDB world state

store.

Version 1.0

Submit

When submitting "emptyContract” gateway transactions, the interaction is recorded on the

ledger. This results in the transaction pathway as depicted in Figure 4.

Client ey

Application

Figure 4: Submit Empty Contract Transaction Pathway

Submit Results

LevelDB- evaluate and submit transactions with varying endorsement policy

Type Policy Max Latency (s) | Avg Latency (s) | Throughput (TPS)
submit 1-of-any 0.41 0.09 485.4
submit 2-of-any 0.33 0.10 420.0

CouchDB- evaluate and

submit transactions with varying end

orsement policy

Type Policy Max Latency (s) | Avg Latency (s) | Throughput (TPS)
submit 1-of-any 0.52 0.11 380.5
submit 2-of-any 0.32 0.13 338.7

Version 1.0

LevelDB Resource Utilization— Submit By Policy @350TPS

LevelDB Submit Memory (MB) LevelDB Submit CPU (%5)
orgloe orglcc
1000 o7
800 9,60
0.50
0.40
, 0.101\"\
orderer orglce orderer 02 : S orgicc
~
T 8- 1cf Any o ! hj -8 10f Any
L]
(] ; aoo I .
- &= 2of Any [! —= =2 of Any
[-]
! ~ %
i o
Ea—Y
orgipeer orglpeer org2peer orglpeer
LevelDB Submit Network 1/O (MB) LevelDB Submit Disc I/O (MB)
orglce orglco
1200 2000
1000
1500
a0
-] 1000
orderer g 400 orglcc or darer ha orglcc
‘\‘\““?“‘ — &= 1of Any - &= 10of Any
RS, . . ;
A \\' \\~ - &= 20of Any N - &=2of Any
N ~ % ,
‘\ \\\\Q # \\
M e -
* = »
orglpeer orglpeer orglpear orglpesr
CouchDB Submit Memory (MB) CouchDB Submit CPU (%)
orglee aorglee
a00 o
060
org2Couchb B ena orgloc org2CouchD B 0.50 orgloc
400)
o
I
-m = 10of Ay flrj 0.10 : - = 1of Ay
o ®Sxg
* “‘-.-‘_ -m = 2 of Any .'(- &= 2of Any
orglCouchDB e\ 29 orglpeer orglCouchDB .
e
”
b &
S, P
R
orderer org2peer orderer orglpeer
CouchDB Submit Network 1/0 (MB) CouchDB Submit Disc /0O (MB)
orglcc orglcc
1200 1400
1000 1200
2CouchDE 800 gec CouchDB 1000 g2cc
org2Coul org org2Coul - s org
== 10f ANy N =& =10of Any
]
~ == 2 of dny] — &= 2of Any
orglCouchDB orglpear orglCouchDE # arglpesr
arderer org2peer orderer orglpeer

Version 1.0

Resource Utilization— Submit 1ofAny Policy @350TPS

1ofAny Submit Memaory (MB)

orglec

1ofAny Submit Network /0 (MB)

1ofAny Submit Disc I/O (MB)

lofAny Submit CPU (%)

orglce
1000 0.70
800 p
org2CouchDB 00 orgec org2CouchDB o b:’ orglec
= 0.40, :]
a0a o7$0
. 0:20 ¢f
s " -8 LevelDB 0.10 04 &= Level DB
Qs 0.00p S
! CouchDB i . . CouchDB
orglCouchDB K » orglpes orgltouchDB I gemmme =94 orglpes
! i
F ./
ok
R e
rdere orgpeer orderer orgZpeer

orglec orglee
1200 2000
1000
= 5 1500
org2CouchDB a0d orgicc org2CauchD B orglee
00 1600
400 o0
1
o -
[=8 LevelDB == Level DB
LY 0 P
- . [} — CouchDB ¥ -y CouchDB
orglCauchDB & I.d—"' orglpear E1C ouchDIB ™ y rglpes
Lo \ #
i N 4
Pl W
[>
¢ diara orglpeer ardarer orgdpeer

Resource Utilization— Submit 20fAny Policy @350TPS

2ofAny Submit Memaory (MB) 2ofAny Submit CPU (%)
orgloce orglce
1000 0.70
200 060
org2CouchDB 00 orglcc org2CouchDB : :: orgicc
At LA Ty
bed, 0:20) N
. —m— LevelDB 0.10 4 %, —8_ Level DB
05 o.o0f N
"’ . CouchDB r' b CouchDB
arglCouchDB r ,’ orglpes: glCouchDB & A rElpes
i i ey V'
! , . L
h / T
L Py - A w
—
rdara; orgipesr ordarar orglpeer
2ofAny Submit Network /0 (MB) 2ofAny Submit Disc I/0 (MB)
orgloce orglce
1200 1400
1000 1200
org2CouchDB 800 orglcc org2CouchDB 1000 orglcc
Py a0a =
600 s
1L.L. and
200 .9 =B Leve DB g il vl O
[[
T 5 CouchDB CouchDB
orglCouchDB) o~ orglpear orglC ouchDB rglpes
[
/ i
\—‘J
rdarer orgipesr ordarar orglpeer

Submit Observations

LevelDB is observed to be beneficial for achievable throughput and reduced latencies in

comparison to CouchDB during submission of an “emptyContract™ gateway transaction for
both investigated endorsement policies.

With a fixed world state database, the endorsement policy is observed to impact the consumed
resources when submitting a transaction. Increasing the number of required endorsements is
observed to increase the CPU and network 1/O, through inclusion of additional peers and smart
contract containers required to participate in each transaction.

Version 1.0 13

In comparing a LevelDB world state database with a CouchDB equivalent, only the network
I/0 is observed to be equivalent when varying the endorsement policy. There is an observed
penalty in additional memory, CPU and disc 1/0 requirements for the use of a CouchDB world
state for the network as a whole, though the memory requirements of the peers are reduced.

Version 1.0

14

Evaluate Transaction Benchmark Results

The following section focusses on the evaluation of a transaction though a network gateway;
evaluation of a smart contract will result on the method being run on a single Hyperledger
Fabric Peer and will not result in any interaction with the Orderer. The investigated scenarios
are targeted at reading from the world state database, resulting in the transaction pathway
depicted in Figure 5.

Blockchain

—
World State

Smart
Contract

Client) "

2 w»

Application

Figure 5: Evaluate Transaction Pathway

Get Asset Benchmark

Benchmark consists of evaluating "getAsset” gateway transactions for the fixed-asset smart
contract deployed within LevelDB and CouchDB networks that uses a 2-of-any endorsement
policy. Each transaction retrieves a single asset with a randomised UUID from the world state

database.

Achievable throughput and associated latencies are investigated through maintaining a
constant transaction backlog for each of the 4 clients. Successive rounds increase the size of
the asset retrieved from the world state database.

Resource utilization is investigated for a fixed transaction rate of 350TPS, retrieving assets of
size 8Kb.

Version 1.0 15

Benchmark Results

LevelDB

Asset Size (bytes)

Max Latency (s)

Avg Latency (s)

Throughput (TPS)

100 0.34 0.05 636.0
1k 0.21 0.06 611.1
2k 0.23 0.06 579.8
4k 0.20 0.07 516.8
8k 0.19 0.08 423.1
16k 0.24 0.11 293.6
32k 0.35 0.18 186.5
64k 0.73 0.35 96.0
CouchDB

Asset Size (bytes)

Max Latency (s)

Avg Latency (s)

Throughput (TPS)

100 1.10 0.06 567.4
1K 1.06 0.07 558.9
2K 0.24 0.07 531.4
4K 0.25 0.08 478.0
8K 0.26 0.09 3954
16K 0.29 0.12 306.1
32K 0.36 0.17 208.3
64K 0.75 0.35 107.0

Version 1.0

16

Asset Retrieval Throughput
700
5}
600 |@
195
E 500 o
5 400 8.
2
®300 i
o
£ 200 e
100 | eaan e s e b e sl e st Sl S e e
0
0 10000 20000 30000 40000 50000 60000 70000
Asset Size (Bytes)
----- @ LevelDB © - CouchDB
Asset Retrieval Latency
0.4
0.35
0.3
= 0.25
-
S 02
g
8015 =
0.1
e R
0.05 999"9
0
0 10000 20000 30000 40000 50000 60000 70000
Asset Size (Bytes)
@ LevelDB © - CouchDB
Cycles Per Asset Retrieve
0.012
0.01
0.008
&
0.006
S =
0.004
0002 og-@" =@
0
0 10000 20000 30000 40000 50000 60000 70000
Asset Size (Bytes)
@ LevelDB © - CouchDB
Version 1.0 17

Resource Utilization- 8k Assets @350TPS

Asset Retrieve Memory (MB)
orglcc
6000
5000
org2CouchDB 4000 org2cc
3000
2000
1000~ - @ = LevelDB
0 Vs
iyl TR - = CouchDB
org1CouchDB N ,7 orglpeer
- 427
4
\\ ;
\ &
v
J
orderer org2peer
Asset Retrieve Network 1/0 (MB)
orglcc
80
60
org2CouchDB org2cc
40
20
1 = «g = CouchDB
Oe
T~ == LevelDB
org1CouchDB ~® orglpeer
orderer org2peer

org2CouchDB

org1CouchDB

orderer

Asset Retrieve CPU (%)

orglcc

0.50

0.40 ¥

0.30 org2cc

0.20

0.10

0,00

> \'-1‘_,;‘)
orglpeer
org2peer

=@ LevelDB
= CouchDB

Benchmark Observations

The CouchDB world state database is observed to achieve comparable throughput and lower
latencies than a LevelDB equivalent, with higher achievable TPS for assets that are larger than

10Kb.

In comparing a LevelDB world state database with a CouchDB equivalent during asset
retrieval, both consume similar memory resources, though the CouchDB world state database
results in greater network 1/0 and a CPU overhead for the CouchDB instance that is not offset

at the peer.

Version 1.0

18

Batch Get Asset Benchmark

Benchmark consists of evaluating "getAssetsFromBatch™ gateway transactions for the fixed-
asset smart contract deployed within LevelDB and CouchDB networks that uses a 2-of-any
endorsement policy. Each transaction retrieves a set of assets, formed by a randomised
selection of available UUIDs, from the world state database.

Achievable throughput and associated latencies are investigated through maintaining a
constant transaction backlog for each of the 4 clients. Successive rounds increase the batch size
of the assets retrieved from the world state database with a fixed asset size of 8Kb.

Resource utilization is investigated for a fixed transaction rate of 30TPS and a batch size of 20
assets, each of size 8Kb.

Benchmark Results
LevelDB

Batch Size | Max Latency (s) | Avg Latency (s) | Throughput (TPS)
1 0.20 0.06 408.7

10 0.48 0.29 75.5

20 1.03 0.56 39.0

30 1.34 0.80 27.9

40 1.68 1.05 21.2

50 2.14 1.29 17.8

CouchDB

Batch Size | Max Latency (s) | Avg Latency (s) | Throughput (TPS)

1 0.15 0.03 388.9
10 0.46 0.18 68.5
20 0.64 0.32 35.6
30 0.84 0.46 24.2
40 1.10 0.60 18.5
50 1.32 0.74 14.9

Version 1.0 19

Asset Batch Retrieval Throughput

450
400
_ 350
&
£ 300
5 250
Q
5 200
3
© 150
N - s
= 100 6-
20 R L — = T s
0
10 20 30 40 50 60
Batch Size
@ LevelDB @ CouchDB
Asset Batch Retrieval Latency
1.4
)
1.2
1 O
= 08 @ o]
g
ﬁ 0.6 o o
0.4 .
Y ©
0.2 o)
0
10 20 30 40 50 60
Batch Size
----- @ LevelDB @ CouchDB
Cycles Per Batch 8K Asset Retrieve
0.08
0.07 7Y
0.06
0.05 2 ih
_ -
0.04 o
s e
0.03 =
0.02
001 | . i
0
10 20 30 40 50 60
Batch Size
----- @ LevelDB @+ CouchDB
Version 1.0 20

Resource Utilization- Batch Size 20 @30TPS

Asset Batch Retrieve Network I/O (MB)
omglcc
200
150
org2CouchDB oglee
100
=0

L CouchDB
. = - e = Level DB
orglCouchDB orglpeer

orderer org2peer

Asset Batch Retrieve Memory (MB) Asset Batch Retrieve CPU (%)
oglce org lcc
2500 100
2000 0.80
org 2CouchDB 1500 ogcc org2CouchDB 0.60 ong 2ec
1000 .40 ¥
00 =& —LevelDs 0204 CouchDB
D 0,00 L‘
W — CouchDB - & = LevelDE
orglCouchDB) F oglpeer org 1CouchDB org 1peer
X ’,
. ’,
g s
L]
orderer org 2peer arderer ong2peer

Benchmark Observations

Use of a LevelDB world state enables higher throughput compared to CouchDB, though this

occurs with higher latencies for each transaction.

In comparing a LevelDB world state database with a CouchDB equivalent during batch

retrieve, there are similarities with the "Get Asset Benchmark’: implementing a CouchDB
incurs a greater CPU and network /O cost without alleviating CPU utilization of the peer.

Version 1.0

21

Paginated Range Query Benchmark

Benchmark consists of evaluating “paginatedRangeQuery” gateway transactions for the fixed-
asset smart contract deployed within LevelDB and CouchDB networks that use a 2-of-any
endorsement policy.

Each transaction retrieves a fixed number of mixed byte size assets in the range [100, 1000,
2000, 4000, 8000, 16000, 32000, 64000] from the world state database.

Achievable throughput and associated latencies are investigated through maintaining a
constant transaction backlog for each of the 4 clients. Successive rounds increase the page size
of assets retrieved from the world state database.

Resource utilization is investigated for a fixed transaction rate of 30TPS and a batch size of 20
assets.

Benchmark Results

LevelDB
Page Size | Max Latency (s) | Avg Latency (s) | Throughput (TPS)
10 0.23 0.16 81.1
20 0.37 0.26 34.0
50 0.86 0.64 11.2
100 1.59 1.23 6.8
200 2.86 2.40 3.6
500 9.02 7.07 0.9
CouchDB
Page Size | Max Latency (s) | Avg Latency (s) | Throughput (TPS)
10 0.94 0.42 82.1
20 1.60 0.75 45.9
50 4.09 1.84 19.4
100 8.03 3.57 9.7
200 16.55 5.32 5.0
500 15.96 4.80 1.6

Version 1.0

Range Query Throughput

90
80
__70
wvy
& 60
5 50
o
& 40
3
o 30
L
=20 'o)
10 Qe == o
0
50 100 150 200 250
Page Size
@ LevelDB © - CouchDB
Range Query Latency
6
Q
5
=4
g
5, o
o
. L J
0
0 50 100 150 200 250
Page Size
@ LevelDB @ CouchDB
Cycles Per Range Query
03
o
0.25
0.2 o
w
E 0.15 @
i
0.1 - o
0.05 o
0
50 100 150 200 250

Page Size

@ LevelDB @ CouchDB

Version 1.0

23

Resource Utilization- page size 20 @30TPS

Mixed Range Query Memory (MB)

orgloc
4000
3000
org 2CouchDB org2ee
2000

1000
= e == LovelDE
N

org1CouchDB L

CouchDB
org 1peer

orderer Org 2peer

Mixed Range Query Network 1/0 (MB)

orglec

100
80
org2CouchDB ©0 arg2ec

a0

2]\

orderer Org 2peer

CouchDB

= e == Level DB

og1CouchDB org lpeer

Mixed Range Query CPU (%)

orglcc
120
1.00
org 2CouchDB 0.80

0.60
0.40
0:20
0,08

ordener

org2cc

CouchDB

o= i wm | ool DB

org 1CouchDB org 1peer

arg2peer

Benchmark Observations

Use of a CouchDB world state database enables greater throughput but higher latencies than

the LevelDB equivalent.

In comparing the resource utilization of a LevelDB world state database with a CouchDB
equivalent during a range query, the CouchDB world state incurs a cost in memory, network
I/0 and CPU utilization. In particular, use of a CouchDB world state for a range query is
observed to result in significant increases in CPU and memory utilization in the peer, with an
associated increase in network 1/0O as a result of communication with the CouchDB instance.

When comparing the range query page sizes against a matching batch size in the "Get Asset
Batch Benchmark, it is observed to be more efficient to use a batch retrieval mechanism with

known UUIDs.

Version 1.0

24

Paginated Rich Query Benchmark

Benchmark consists of evaluating “paginatedRichQuery" gateway transactions for the fixed-
asset smart contract deployed within a CouchDB network that uses a 2-of-any endorsement
policy. Each transaction retrieves a fixed number of mixed byte size assets in the range [100,
1000, 2000, 4000, 8000, 16000, 32000, 64000] from the world state database based on the
following Mango query that matches an index created in CouchDB:

{

by

'selector": {
'docType': ‘fixed-asset’,
'creator": 'clientld’,

'bytesize': 'bytesize’

Achievable throughput and associated latencies are investigated through maintaining a
constant transaction backlog for each of the 4 clients. Successive rounds increase the page size

of assets retrieved from the world state database.

Benchmark Results

Page Size | Max Latency (s) | Avg Latency (s) | Throughput (TPS)
10 21.68 0.29 80.9

20 14.58 0.77 30.8

50 15.13 2.08 12.1

100 16.31 3.75 7.1

200 23.35 6.41 3.9

500 23.48 4.49 1.1

Version 1.0

25

Rich Query Throughput
90
80 o
70
E 60
E
5 50
(=N
B 40
230 e
=
20
(o]
10 °)
0
0 50 100 150 200 250
Page Size
Rich Query Latency
7
6
5
=4
g
E 3
2
1
0
0 50 100 150 200 250
Page Size
Cycles Per Rich Query
03
0.25
0.2
v
£ 015
0.1
0.05
0
0 50 100 150 200 250
Page Size

Benchmark Observations

Increasing the page size of a rich query has significant impact on the achievable throughput
and latency. This corresponds with significantly increased network 1/O across the target peer,
smart contract and the CouchDB world state database.

Version 1.0 26

Inspection of the resource utilization statistics for the individual benchmark runs show that the
peer must deal with a significant network 1/O load. This is a result of the peer obtaining and
relaying the information from CouchDB to the smart contract transaction, and then passing
back the resulting data from the smart contract transaction to the calling client application.

Version 1.0 27

Submit Transaction Benchmark Results

The following section focusses on the submission of a transaction though a network gateway;
submission of a smart contract will result on the method being run on Hyperledger Fabric Peers
as required by the endorsement policy and appended to the ledger by the Orderer. The
investigated scenarios are targeted at writing to the world state database, resulting in the
transaction pathway as depicted in Figure 6.

Blockchain

_
World State

2 “w»

Application - , g

Figure 6: Submit Transaction Pathway
Create Asset Benchmark

Benchmark consists of submitting ~ create Asset™ gateway transactions for the fixed-asset smart
contract deployed within LevelDB and CouchDB networks that uses a 2-of-any endorsement
policy. Each transaction inserts a single asset into the world state database.

Achievable throughput and associated latencies are investigated through maintaining a
constant transaction backlog for each of the 4 clients. Successive rounds increase the size of
the asset inserted into the world state database.

Resource utilization is investigated for a fixed transaction rate of 125TPS and an asset size of
8Kb.

Version 1.0 28

Benchmark Results

Level DB

Asset Size (bytes)

Max Latency (s)

Avg Latency (s)

Throughput (TPS)

.... @ LevelDB ©

Asset Size (Bytes)

CouchDB

100 0.48 0.11 372.5
2k 0.55 0.13 329.2
4k 0.60 0.14 294.7
8k 0.71 0.17 242.0
16k 0.76 0.23 177.6
32k 0.95 0.35 114.3
64k 1.45 0.62 61.2
CouchDB
Asset Size (bytes) | Max Latency (s) I(-\v)g Latency | Throughput (TPS)
s
100 0.71 0.22 194.0
2K 0.57 0.24 179.2
4K 0.54 0.26 164.1
8K 0.74 0.29 147.7
16K 0.88 0.36 119.9
32K 0.99 0.48 88.3
64K 1.58 0.77 51.7
Asset Creation Throughput
400
Q
350
0,
7 300 e
B g
2 200
% Te, =
2 150 o
£ 100 -
50
0
0 10000 20000 30000 40000 50000 60000 70000

Version 1.0

29

Asset Creation Latency

0.9
0.8
0.7
— 0.6
i
= 0.5 o
& 04
0.3 O
02 ©° PR
01 0@
0
0 10000 20000 30000 40000 50000 60000 70000
Asset Size (Bytes)
@ LevelDB © - CouchDB
Cycles Per Asset Create
0.025
0.02
» 0.015
£
o]
- 001
s
o
0005 0-@© pE—
e
0
0 10000 20000 30000 40000 50000 60000 70000
Asset Size (Bytes)

----- @ LevelDB @ CouchDB

Version 1.0

30

Resource Utilization- 8k Assets @125TPS

Asset Creation Memory (MB) Asset Creation CPU (%)
orglee orglee
700 1.40
600 1.20
org2CouchDB igg orglee org2CouchD B gé org2ee
300 0.60
200 086, P,
100 pag,_ - @ = LevelDB 020 P~a% e = LovelDB
0y ~—— N .00 ! 3 CouchDB
1 "~ CouchD ouch
orglCouchDB) ') orglpeer orglCouchDB \\ ,’ orglpeer
L]
4’ 7
- !
S ’
(4
%
orderer orgZpeer orderer orgZpeer
Asset Creation Network 1/0 (MB) Asset Creation Disc /0 (MB)
orglec orglec
3000 2000
2500 1500
org2CouchDB 2000 org2ec org2CouchDB = org2ee
1500 1000
1000 g, s00
- ' =
5005 Ty == LevelDB - = LevelDB
a ~ 0,
" CouchDB / - CouchDB
orglCouchDB / '> orglpeer orglCouchDB ’f ’? orglpeer
i S ’
,I -~ - L4
e) \‘,
orderer org2peer orderer orgZpeer

Benchmark Observations

LevelDB facilitates asset addition at higher TPS and lower latencies than CouchDB. The
throughput advantage of LevelDB is lessened with large asset sizes, but the latency advantage
IS retained.

In comparing the resource utilization of a LevelDB world state database with a CouchDB

equivalent during asset creation, a CouchDB world state is CPU intensive, but is beneficial in
terms of disc 1/0.

Batch Create Asset Benchmark

Benchmark consists of submitting “createAssetsFromBatch™ gateway transactions for the
fixed-asset smart contract deployed within LevelDB and CouchDB networks that uses a 2-of-
any endorsement policy. Each transaction inserts a set of assets into the world state database.

Achievable throughput and associated latencies are investigated through maintaining a
constant transaction backlog for each of the 4 clients. Successive rounds increase the batch size
of the assets inserted into the world state database with a fixed asset size of 8Kb.

Resource utilization is investigated for a fixed transaction rate of 15TPS and a batch size of 20.

Version 1.0 31

Benchmark Results

LevelDB
Batch Size | Max Latency (s) | Avg Latency (s) | Throughput (TPS)
1 0.55 0.11 129.8
10 0.85 0.39 39.1
20 2.04 0.72 19.7
30 1.67 0.91 15.5
40 2.39 1.22 11.1
50 8.83 2.02 7.4
CouchDB
Batch Size | Max Latency (s) | Avg Latency (s) | Throughput (TPS)
1 0.55 0.15 104.9
10 0.93 0.48 31.4
20 1.99 0.80 18.4
30 2.14 1.13 12.7
40 2.82 1.42 9.8
50 3.29 1.77 7.5
Batch Asset Creation Throughput
140
e
120
@ 100 |©.
=
5 80
£
® 60
o
£ 40 °
20 o
6 e
0 0
0 10 20 30 40 50 60
Number Created per TXN
----- @ LevelDB @ CouchDB
Version 1.0 32

Batch Asset Creation Latency

25
2 .0
o
vy
*—a- 15 °
= @
g 1 ? '
e e N e e @
0.5 g
0
10 20 30 40 50 60
Number Created Per TXN
----- @ LevelDB @ CouchDB
Cycles Per Batch Asset Create
0.16
0.14 .0
0.12
01 o
v @
oo .
0.08 o
S &
0.06 g z
0.04 :
002 =
0
10 20 30 40 50 60

Number Created Per TXN

----- @--- LevelDB ©-- CouchDB

Version 1.0

33

Resource Utilization- Batch Size 20 @15TPS

Asset Batch Creation Memory (MB)

orglcc
250
200
2 20auc -
org 2CouchDB 150 oglec
100
-
50 -
- - - Loyl D8
ol .
M - CouchDB
org 1CouchDB “‘ > org lpeer
7,
N, \ 2
N
'I
orderer org 2peer

Asset Batch Creation Network I/O (MB)

orglcc

70

&0

50

40

30

20 .. -~

104 -

L' “e

/ >

s,

L

i ’,

TEo~

org 2CouchDB oglec

= e Loyl DB

CouchDB

org 1CouchDB . org lpeer

i

orderer org 2peer

org2CouchDB

omg 1CouchDB

orderer

org2CouchDB

omng 1CouchDB

Asset Batch Creation CPU (%)

org lec
030
025 g
0209
2015 1
ool
C'.C'Sl
0.00)

b #

% »
T

Eloc
- e o= Level DB

-~ o
~
I
!
I
]

J CouchDB

org lpeer

org Zpeer

Asset Batch Creation Disc 1/0 (MB)

argloc
50
40
10 orgce
20
10
= & == LEvel DB
0 .,
’ - - CouchDB
4 = ®orglpeer
’ 2 Elp
’ ,
. 7’
g ’
o !
‘Jo'glaf_*_"

Benchmark Observations

Use of a LevelDB world state database is seen to enable higher throughput and lower latencies
with small batch sizes, though this benefit is lost with large batch sizes.

In comparing the resource utilization of a LevelDB world state database with a CouchDB
equivalent during batch asset creation, there are similarities with the “Create Asset
Benchmark™: implementing a CouchDB world state is CPU intensive, but is observed to be

beneficial in terms of disc 1/0.

Version 1.0

34

Appendix

Machine Configuration

This report was generated using the following Hyperledger Fabric component levels
e Fabric images: 1.4.0
e Fabric chaincode:1.4.0
e Fabric SDK: 1.4.0

Hyperledger Caliper at commit level 4156c¢c4da7105fd1c2b848573a9943bfc9900bech was
used.

The report was generated on an IBM Cloud Softlayer machine with the following
configuration:
e OS: Ubuntu 16.04-64
RAM: 2x16GB Micron 16GB DDR4 2Rx8
Processor: 3.8GHz Intel Xeon-KabyLake (E3-1270-V6-Quadcore)
Motherboard: Lenovo Systemx3250-M6
Firmware: M3E124G 2.10 10-12-2017
Network Card: Silicom PE310G4i40-T
HDD: 960GB SanDisk CloudSpeed 1000 SSD
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Byte Order: Little Endian
CPU(s): 8
On-line CPU(s) list: 0-7
Thread(s) per core: 2
Core(s) per socket: 4
Socket(s): 1

Tools

The benchmarking was performed using Hyperledger Caliper, a performance benchmark
harness for Hyperledger blockchain solutions. The documentation for the tool contains
information and examples on running benchmarks, as well as information in configuring the
tool to run the benchmarks used within, and available from, this report.

Resources

The smart contract and Hyperledger Caliper configuration files used in the creation this report
are available for download from the caliper-benchmarks GitHub repository.

Version 1.0 35

https://github.com/hyperledger/caliper
https://github.com/hyperledger/caliper-benchmarks

	Preface
	Notes

	Benchmark Information
	System Under Test
	The Smart Contract
	Smart Contract Benchmarks

	Empty Contract Benchmark Results
	Evaluate
	Evaluate Results
	Evaluate Observations

	Submit
	Submit Results
	Submit Observations

	Evaluate Transaction Benchmark Results
	Get Asset Benchmark
	Benchmark Results
	Benchmark Observations

	Batch Get Asset Benchmark
	Benchmark Results
	Benchmark Observations

	Paginated Range Query Benchmark
	Benchmark Results
	Benchmark Observations

	Paginated Rich Query Benchmark
	Benchmark Results
	Benchmark Observations

	Submit Transaction Benchmark Results
	Create Asset Benchmark
	Benchmark Results
	Benchmark Observations

	Batch Create Asset Benchmark
	Benchmark Results
	Benchmark Observations

	Appendix
	Machine Configuration
	Tools
	Resources

