

 Version 1.0 1

Hyperledger Fabric 1.4.0
Performance Information Report

N K Lincoln

IBM Blockchain Developer Tools

nick.lincoln@uk.ibm.com

mailto:nick.lincoln@uk.ibm.com

 Version 1.0 2

Table of Contents

Preface .. 3

Notes... 3

Benchmark Information ... 4

System Under Test ... 4

The Smart Contract .. 4

Smart Contract Benchmarks ... 6

Empty Contract Benchmark Results .. 8

Evaluate .. 8
Evaluate Results ..8
Evaluate Observations ... 10

Submit ... 11
Submit Results ... 11
Submit Observations ... 13

Evaluate Transaction Benchmark Results ..15

Get Asset Benchmark ... 15
Benchmark Results .. 16
Benchmark Observations .. 18

Batch Get Asset Benchmark ... 19
Benchmark Results .. 19
Benchmark Observations .. 21

Paginated Range Query Benchmark .. 22
Benchmark Results .. 22
Benchmark Observations .. 24

Paginated Rich Query Benchmark ... 25
Benchmark Results .. 25
Benchmark Observations .. 26

Submit Transaction Benchmark Results ...28

Create Asset Benchmark .. 28
Benchmark Results .. 29
Benchmark Observations .. 31

Batch Create Asset Benchmark ... 31
Benchmark Results .. 32
Benchmark Observations .. 34

Appendix ..35

Machine Configuration ... 35

Tools ... 35

Resources .. 35

 Version 1.0 3

Preface
This report intended to provide key processing and performance characteristics to architects,

systems programmers, analysts and programmers. For best use of the performance reports, the

user should be familiar with the concepts and operation of Hyperledger Fabric.

Performance observations have been obtained from testing a Hyperledger Fabric JavaScript

smart contract, driven by Fabric-SDK-Node clients via Hyperledger Caliper, a performance

benchmark harness for Hyperledger blockchain solutions. During the benchmarking

Hyperledger Caliper was configured to drive all smart contract transactions through a

Hyperledger Fabric client gateway.

Notes
The performance information is obtained by measuring the transaction throughput for different

types of smart contract transactions. The term “transaction” is used in a generic sense, and

refers to any interaction with a smart contract, regardless of the complexity of the subsequent

interaction(s) with the blockchain platform.

Measuring transaction throughput demonstrates potential transaction rates, and the impact of

the relative cost of different Hyperledger Fabric Stub API calls.

The data contained in the reports was measured in a controlled environment, results obtained

in other environments might vary. For more details on the environments used, see the resources

at the end of this report.

The performance data cannot be compared across versions of Hyperledger Fabric, as testing

hardware and environments may have changed significantly. The testing contents and

processing methodologies may have also changed between performance reports, and so cannot

be compared.

 Version 1.0 4

Benchmark Information

System Under Test
The test topology is given in Figure 1 below. All tests were performed on a single Softlayer

machine with the specification given in the Appendix section.

Figure 1: Test Topology

Two Hyperledger Fabric networks were investigated, each comprising of two organizations,

with each organization having a single peer, and using a Solo ordering service. The difference

between the two networks was the World State database used: one implemented LevelDB; the

other CouchDB. The testing of distributed networks is the subject of future works.

The Smart Contract
All tests are facilitated by the `fixed-asset` smart contract that is deployed to the Hyperledger

Fabric network. The smart contract facilitates the driving of core API methods that are

commonly used by a smart contract developer.

Smart Contract Method Description

emptyContract Immediately returns an empty (null) response and represents the

minimum possible overhead incurred through evaluation or

submission of a smart contract method via a gateway.

createAsset Performs a single `putState()` operation, inserting an asset of

defined byte size into the World State database.

createAssetsFromBatch Performs multiple `putState()` operations over an array of

assets, inserting each into the World State database.

getAsset Performs a single `getState()` operation, extracting and

returning a single asset from the World State database using a

passed UUID.

 Version 1.0 5

getAssetsFromBatch Performs multiples `getState()` operations over an array of asset

UUIDs, extracting and returning all asset from the World State

database.

paginatedRangeQuery Performs a `getStateByRangeWithPagination()` operation,

based on passed start/end keys, a desired page size and passed

bookmark. The records obtained from the query are processed

and returned in a JSON response that also includes a new

bookmark.

paginatedRichQuery Performs a `getQueryResultWithPagination()` operation, based

on a passed Mango query string, a desired page size and

bookmark. The records obtained from the query are processed

and returned in a JSON response that also includes a new

bookmark.

Only valid for deployments including a CouchDB World State

database.

Smart contract methods may be evaluated or submitted via a Fabric Network gateway. An

overview of possible transaction pathways from a client application interacting with

Hyperedger Fabric is presented in Figure 2.

Evaluation of a smart contract method will not include interaction with the ordering service,

and consequently will not result in appending to the leger; submission of a smart contract will

result on the method being run on Hyperledger Fabric Peers as required by the endorsement

policy and appended to the ledger by the ordering service.

Figure 2: Possible Transaction Pathways

 Version 1.0 6

Smart Contract Benchmarks
The complete output of the benchmark runs, and the resources used to perform them, are in the

resources section of the Appendix. All benchmarks are driven at maximum possible TPS for a

duration of 5 minutes by 4 clients. This is followed by a driving the benchmarks at a set TPS

for a duration of 5 minutes by 4 clients to enable resource utilization comparisons. The

benchmarks comprise of:

Benchmark Config File(s) Description

Empty

Contract

empty-contract-1of.yaml

empty-contract-2of.yaml

Evaluates and submits `emptyContract`

gateway transactions for the fixed-asset

smart contract. This transaction performs no

action.

Repeated for different Endorsement Policies.

Create Asset create-asset.yaml Submits `createAsset` gateway transactions

for the fixed-asset smart contract. Each

transaction inserts a single asset into the

world state database.

Successive rounds increase the asset byte

size inserted into the world state database.

Create Asset

Batch

create-asset-batch.yaml Submits `createAssetsFromBatch` gateway

transactions for the fixed-asset smart

contract. Each transaction inserts a sequence

of fixed size assets into the world state

database.

Successive rounds increase the batch size of

assets inserted into the world state database.

Get Asset get-asset.yaml Evaluates `getAsset` gateway transactions

for the fixed-asset smart contract. Each

transaction retrieves a single asset from the

world state database.

Successive rounds increase the asset byte

size retrieved from the world state database.

Get Asset Batch get-asset-batch.yaml Evaluates `getAssetsFromBatch` gateway

transactions for the fixed-asset smart

contract. Each transaction retrieves a series

of assets from the world state database.

Successive rounds increase the batch size of

assets retrieved from the world state

database.

Paginated

Range Query

mixed-range-query-

pagination.yaml

Evaluates `paginatedRangeQuery` gateway

transactions for the fixed-asset smart

contract. Each transaction retrieves a set of

assets from the world state database.

 Version 1.0 7

Successive rounds increase the page size of

assets retrieved from the world state

database.

Paginated Rich

Query

mixed-rich-query-

pagination.yaml

Evaluates `paginatedRichQuery` gateway

transactions for the fixed-asset smart

contract. Each transaction retrieves a set of

assets from the world state database.

Successive rounds increase the page size of

assets retrieved from the world state

database.

 Version 1.0 8

Empty Contract Benchmark Results
The Empty Contract Benchmark consists of evaluating or submitting ̀ emptyContract` gateway

transactions for the fixed-asset smart contract deployed within LevelDB and CouchDB

networks. This is repeated for networks that use the following endorsement policies:

• 1-of-any

• 2-of-any

Achievable throughput and associated latencies are investigated through maintaining a

constant transaction backlog of 15 transactions for each of the 4 clients.

Resource utilization is investigated for fixed TPS rates of 750 and 350TPS for evaluate and

submit transaction respectively.

Evaluate
When evaluating ̀ emptyContract` gateway transactions, there is no interaction with the ledger.

This results in the transaction pathway as depicted in Figure 3

Figure 3: Evaluate Empty Contract Transaction Pathway

Evaluate Results

LevelDB- evaluate and submit transactions with varying endorsement policy

Type Policy Max Latency (s) Avg Latency (s) Throughput (TPS)

evaluate 1-of-any 0.18 0.04 792.3

evaluate 2-of-any 0.18 0.04 796.4

 Version 1.0 9

CouchDB- evaluate and submit transactions with varying endorsement policy

Type Policy Max Latency (s) Avg Latency (s) Throughput (TPS)

evaluate 1-of-any 0.16 0.04 789.9

evaluate 2-of-any 0.17 0.04 797.5

LevelDB Resource Utilization– Evaluate By Policy @750TPS

CouchDB Resource Utilization– Evaluate By Policy @750TPS

 Version 1.0 10

Resource Utilization– Evaluate 1ofAny Policy @750TPS

Resource Utilization– Evaluate 2ofAny Policy @750TPS

Evaluate Observations
With a fixed world state database, the endorsement policy has no impact on the consumed

resources when evaluating gateway transactions.

In comparing a LevelDB world state database with a CouchDB equivalent, there is no

appreciable difference in the achievable transaction throughput or transaction latency, nor the

CPU or network I/O consumed by either implementation when varying the endorsement policy.

There is a slight cost in additional memory requirements for the use of a CouchDB world state

store.

 Version 1.0 11

Submit
When submitting `emptyContract` gateway transactions, the interaction is recorded on the

ledger. This results in the transaction pathway as depicted in Figure 4.

Figure 4: Submit Empty Contract Transaction Pathway

Submit Results

LevelDB- evaluate and submit transactions with varying endorsement policy

Type Policy Max Latency (s) Avg Latency (s) Throughput (TPS)

submit 1-of-any 0.41 0.09 485.4

submit 2-of-any 0.33 0.10 420.0

CouchDB- evaluate and submit transactions with varying endorsement policy

Type Policy Max Latency (s) Avg Latency (s) Throughput (TPS)

submit 1-of-any 0.52 0.11 380.5

submit 2-of-any 0.32 0.13 338.7

 Version 1.0 12

LevelDB Resource Utilization– Submit By Policy @350TPS

CouchDB Resource Utilization– Submit By Policy @350TPS

 Version 1.0 13

Resource Utilization– Submit 1ofAny Policy @350TPS

Resource Utilization– Submit 2ofAny Policy @350TPS

Submit Observations
LevelDB is observed to be beneficial for achievable throughput and reduced latencies in

comparison to CouchDB during submission of an `emptyContract` gateway transaction for

both investigated endorsement policies.

With a fixed world state database, the endorsement policy is observed to impact the consumed

resources when submitting a transaction. Increasing the number of required endorsements is

observed to increase the CPU and network I/O, through inclusion of additional peers and smart

contract containers required to participate in each transaction.

 Version 1.0 14

In comparing a LevelDB world state database with a CouchDB equivalent, only the network

I/O is observed to be equivalent when varying the endorsement policy. There is an observed

penalty in additional memory, CPU and disc I/O requirements for the use of a CouchDB world

state for the network as a whole, though the memory requirements of the peers are reduced.

 Version 1.0 15

Evaluate Transaction Benchmark Results

The following section focusses on the evaluation of a transaction though a network gateway;

evaluation of a smart contract will result on the method being run on a single Hyperledger

Fabric Peer and will not result in any interaction with the Orderer. The investigated scenarios

are targeted at reading from the world state database, resulting in the transaction pathway

depicted in Figure 5.

Figure 5: Evaluate Transaction Pathway

Get Asset Benchmark

Benchmark consists of evaluating `getAsset` gateway transactions for the fixed-asset smart

contract deployed within LevelDB and CouchDB networks that uses a 2-of-any endorsement

policy. Each transaction retrieves a single asset with a randomised UUID from the world state

database.

Achievable throughput and associated latencies are investigated through maintaining a

constant transaction backlog for each of the 4 clients. Successive rounds increase the size of

the asset retrieved from the world state database.

Resource utilization is investigated for a fixed transaction rate of 350TPS, retrieving assets of

size 8Kb.

 Version 1.0 16

Benchmark Results

LevelDB

Asset Size (bytes) Max Latency (s) Avg Latency (s) Throughput (TPS)

100 0.34 0.05 636.0

1k 0.21 0.06 611.1

2k 0.23 0.06 579.8

4k 0.20 0.07 516.8

8k 0.19 0.08 423.1

16k 0.24 0.11 293.6

32k 0.35 0.18 186.5

64k 0.73 0.35 96.0

CouchDB

Asset Size (bytes) Max Latency (s) Avg Latency (s) Throughput (TPS)

100 1.10 0.06 567.4

1K 1.06 0.07 558.9

2K 0.24 0.07 531.4

4K 0.25 0.08 478.0

8K 0.26 0.09 395.4

16K 0.29 0.12 306.1

32K 0.36 0.17 208.3

64K 0.75 0.35 107.0

 Version 1.0 17

 Version 1.0 18

Resource Utilization- 8k Assets @350TPS

Benchmark Observations
The CouchDB world state database is observed to achieve comparable throughput and lower

latencies than a LevelDB equivalent, with higher achievable TPS for assets that are larger than

10Kb.

In comparing a LevelDB world state database with a CouchDB equivalent during asset

retrieval, both consume similar memory resources, though the CouchDB world state database

results in greater network I/O and a CPU overhead for the CouchDB instance that is not offset

at the peer.

 Version 1.0 19

Batch Get Asset Benchmark

Benchmark consists of evaluating `getAssetsFromBatch` gateway transactions for the fixed-

asset smart contract deployed within LevelDB and CouchDB networks that uses a 2-of-any

endorsement policy. Each transaction retrieves a set of assets, formed by a randomised

selection of available UUIDs, from the world state database.

Achievable throughput and associated latencies are investigated through maintaining a

constant transaction backlog for each of the 4 clients. Successive rounds increase the batch size

of the assets retrieved from the world state database with a fixed asset size of 8Kb.

Resource utilization is investigated for a fixed transaction rate of 30TPS and a batch size of 20

assets, each of size 8Kb.

Benchmark Results
LevelDB

Batch Size Max Latency (s) Avg Latency (s) Throughput (TPS)

1 0.20 0.06 408.7

10 0.48 0.29 75.5

20 1.03 0.56 39.0

30 1.34 0.80 27.9

40 1.68 1.05 21.2

50 2.14 1.29 17.8

CouchDB

Batch Size Max Latency (s) Avg Latency (s) Throughput (TPS)

1 0.15 0.03 388.9

10 0.46 0.18 68.5

20 0.64 0.32 35.6

30 0.84 0.46 24.2

40 1.10 0.60 18.5

50 1.32 0.74 14.9

 Version 1.0 20

 Version 1.0 21

Resource Utilization- Batch Size 20 @30TPS

Benchmark Observations
Use of a LevelDB world state enables higher throughput compared to CouchDB, though this

occurs with higher latencies for each transaction.

In comparing a LevelDB world state database with a CouchDB equivalent during batch

retrieve, there are similarities with the `Get Asset Benchmark`: implementing a CouchDB

incurs a greater CPU and network I/O cost without alleviating CPU utilization of the peer.

 Version 1.0 22

Paginated Range Query Benchmark

Benchmark consists of evaluating `paginatedRangeQuery` gateway transactions for the fixed-

asset smart contract deployed within LevelDB and CouchDB networks that use a 2-of-any

endorsement policy.

Each transaction retrieves a fixed number of mixed byte size assets in the range [100, 1000,

2000, 4000, 8000, 16000, 32000, 64000] from the world state database.

Achievable throughput and associated latencies are investigated through maintaining a

constant transaction backlog for each of the 4 clients. Successive rounds increase the page size

of assets retrieved from the world state database.

Resource utilization is investigated for a fixed transaction rate of 30TPS and a batch size of 20

assets.

Benchmark Results

LevelDB

Page Size Max Latency (s) Avg Latency (s) Throughput (TPS)

10 0.23 0.16 81.1

20 0.37 0.26 34.0

50 0.86 0.64 11.2

100 1.59 1.23 6.8

200 2.86 2.40 3.6

500 9.02 7.07 0.9

CouchDB

Page Size Max Latency (s) Avg Latency (s) Throughput (TPS)

10 0.94 0.42 82.1

20 1.60 0.75 45.9

50 4.09 1.84 19.4

100 8.03 3.57 9.7

200 16.55 5.32 5.0

500 15.96 4.80 1.6

 Version 1.0 23

 Version 1.0 24

Resource Utilization- page size 20 @30TPS

Benchmark Observations
Use of a CouchDB world state database enables greater throughput but higher latencies than

the LevelDB equivalent.

In comparing the resource utilization of a LevelDB world state database with a CouchDB

equivalent during a range query, the CouchDB world state incurs a cost in memory, network

I/O and CPU utilization. In particular, use of a CouchDB world state for a range query is

observed to result in significant increases in CPU and memory utilization in the peer, with an

associated increase in network I/O as a result of communication with the CouchDB instance.

When comparing the range query page sizes against a matching batch size in the `Get Asset

Batch Benchmark`, it is observed to be more efficient to use a batch retrieval mechanism with

known UUIDs.

 Version 1.0 25

Paginated Rich Query Benchmark

Benchmark consists of evaluating `paginatedRichQuery` gateway transactions for the fixed-

asset smart contract deployed within a CouchDB network that uses a 2-of-any endorsement

policy. Each transaction retrieves a fixed number of mixed byte size assets in the range [100,

1000, 2000, 4000, 8000, 16000, 32000, 64000] from the world state database based on the

following Mango query that matches an index created in CouchDB:

Achievable throughput and associated latencies are investigated through maintaining a

constant transaction backlog for each of the 4 clients. Successive rounds increase the page size

of assets retrieved from the world state database.

Benchmark Results

Page Size Max Latency (s) Avg Latency (s) Throughput (TPS)

10 21.68 0.29 80.9

20 14.58 0.77 30.8

50 15.13 2.08 12.1

100 16.31 3.75 7.1

200 23.35 6.41 3.9

500 23.48 4.49 1.1

{

 'selector': {

 'docType': 'fixed-asset',

 'creator': 'clientId’,

 'bytesize': 'bytesize'

 }

}

 Version 1.0 26

Benchmark Observations
Increasing the page size of a rich query has significant impact on the achievable throughput

and latency. This corresponds with significantly increased network I/O across the target peer,

smart contract and the CouchDB world state database.

 Version 1.0 27

Inspection of the resource utilization statistics for the individual benchmark runs show that the

peer must deal with a significant network I/O load. This is a result of the peer obtaining and

relaying the information from CouchDB to the smart contract transaction, and then passing

back the resulting data from the smart contract transaction to the calling client application.

 Version 1.0 28

Submit Transaction Benchmark Results

The following section focusses on the submission of a transaction though a network gateway;

submission of a smart contract will result on the method being run on Hyperledger Fabric Peers

as required by the endorsement policy and appended to the ledger by the Orderer. The

investigated scenarios are targeted at writing to the world state database, resulting in the

transaction pathway as depicted in Figure 6.

Figure 6: Submit Transaction Pathway

Create Asset Benchmark

Benchmark consists of submitting ̀ createAsset` gateway transactions for the fixed-asset smart

contract deployed within LevelDB and CouchDB networks that uses a 2-of-any endorsement

policy. Each transaction inserts a single asset into the world state database.

Achievable throughput and associated latencies are investigated through maintaining a

constant transaction backlog for each of the 4 clients. Successive rounds increase the size of

the asset inserted into the world state database.

Resource utilization is investigated for a fixed transaction rate of 125TPS and an asset size of

8Kb.

 Version 1.0 29

Benchmark Results
Level DB

Asset Size (bytes) Max Latency (s) Avg Latency (s) Throughput (TPS)

100 0.48 0.11 372.5

2k 0.55 0.13 329.2

4k 0.60 0.14 294.7

8k 0.71 0.17 242.0

16k 0.76 0.23 177.6

32k 0.95 0.35 114.3

64k 1.45 0.62 61.2

CouchDB

Asset Size (bytes) Max Latency (s) Avg Latency
(s)

Throughput (TPS)

100 0.71 0.22 194.0

2K 0.57 0.24 179.2

4K 0.54 0.26 164.1

8K 0.74 0.29 147.7

16K 0.88 0.36 119.9

32K 0.99 0.48 88.3

64K 1.58 0.77 51.7

 Version 1.0 30

 Version 1.0 31

Resource Utilization- 8k Assets @125TPS

Benchmark Observations
LevelDB facilitates asset addition at higher TPS and lower latencies than CouchDB. The

throughput advantage of LevelDB is lessened with large asset sizes, but the latency advantage

is retained.

In comparing the resource utilization of a LevelDB world state database with a CouchDB

equivalent during asset creation, a CouchDB world state is CPU intensive, but is beneficial in

terms of disc I/O.

Batch Create Asset Benchmark

Benchmark consists of submitting `createAssetsFromBatch` gateway transactions for the

fixed-asset smart contract deployed within LevelDB and CouchDB networks that uses a 2-of-

any endorsement policy. Each transaction inserts a set of assets into the world state database.

Achievable throughput and associated latencies are investigated through maintaining a

constant transaction backlog for each of the 4 clients. Successive rounds increase the batch size

of the assets inserted into the world state database with a fixed asset size of 8Kb.

Resource utilization is investigated for a fixed transaction rate of 15TPS and a batch size of 20.

 Version 1.0 32

Benchmark Results

LevelDB

Batch Size Max Latency (s) Avg Latency (s) Throughput (TPS)

1 0.55 0.11 129.8

10 0.85 0.39 39.1

20 2.04 0.72 19.7

30 1.67 0.91 15.5

40 2.39 1.22 11.1

50 8.83 2.02 7.4

CouchDB

Batch Size Max Latency (s) Avg Latency (s) Throughput (TPS)

1 0.55 0.15 104.9

10 0.93 0.48 31.4

20 1.99 0.80 18.4

30 2.14 1.13 12.7

40 2.82 1.42 9.8

50 3.29 1.77 7.5

 Version 1.0 33

 Version 1.0 34

Resource Utilization- Batch Size 20 @15TPS

Benchmark Observations
Use of a LevelDB world state database is seen to enable higher throughput and lower latencies

with small batch sizes, though this benefit is lost with large batch sizes.

In comparing the resource utilization of a LevelDB world state database with a CouchDB

equivalent during batch asset creation, there are similarities with the `Create Asset

Benchmark`: implementing a CouchDB world state is CPU intensive, but is observed to be

beneficial in terms of disc I/O.

 Version 1.0 35

Appendix

Machine Configuration
This report was generated using the following Hyperledger Fabric component levels

• Fabric images: 1.4.0

• Fabric chaincode:1.4.0

• Fabric SDK: 1.4.0

Hyperledger Caliper at commit level 4156c4da7105fd1c2b848573a9943bfc9900becb was

used.

The report was generated on an IBM Cloud Softlayer machine with the following

configuration:

• OS: Ubuntu 16.04-64

• RAM: 2x16GB Micron 16GB DDR4 2Rx8

• Processor: 3.8GHz Intel Xeon-KabyLake (E3-1270-V6-Quadcore)

• Motherboard: Lenovo Systemx3250-M6

• Firmware: M3E124G 2.10 10-12-2017

• Network Card: Silicom PE310G4i40-T

• HDD: 960GB SanDisk CloudSpeed 1000 SSD

• Architecture: x86_64

• CPU op-mode(s): 32-bit, 64-bit

• Byte Order: Little Endian

• CPU(s): 8

• On-line CPU(s) list: 0-7

• Thread(s) per core: 2

• Core(s) per socket: 4

• Socket(s): 1

Tools
The benchmarking was performed using Hyperledger Caliper, a performance benchmark

harness for Hyperledger blockchain solutions. The documentation for the tool contains

information and examples on running benchmarks, as well as information in configuring the

tool to run the benchmarks used within, and available from, this report.

Resources
The smart contract and Hyperledger Caliper configuration files used in the creation this report

are available for download from the caliper-benchmarks GitHub repository.

https://github.com/hyperledger/caliper
https://github.com/hyperledger/caliper-benchmarks

	Preface
	Notes

	Benchmark Information
	System Under Test
	The Smart Contract
	Smart Contract Benchmarks

	Empty Contract Benchmark Results
	Evaluate
	Evaluate Results
	Evaluate Observations

	Submit
	Submit Results
	Submit Observations

	Evaluate Transaction Benchmark Results
	Get Asset Benchmark
	Benchmark Results
	Benchmark Observations

	Batch Get Asset Benchmark
	Benchmark Results
	Benchmark Observations

	Paginated Range Query Benchmark
	Benchmark Results
	Benchmark Observations

	Paginated Rich Query Benchmark
	Benchmark Results
	Benchmark Observations

	Submit Transaction Benchmark Results
	Create Asset Benchmark
	Benchmark Results
	Benchmark Observations

	Batch Create Asset Benchmark
	Benchmark Results
	Benchmark Observations

	Appendix
	Machine Configuration
	Tools
	Resources

